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An overview of machine listening

Machine listening is everywhere!




An overview of machine listening

Traditional machine listening methods

Traditional methods use handcrafted signal processing
Features and linear/Gaussian/Markov modeling methods
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An overview of machine listening

Modern machine listening methods

Mot

sound event recognition ‘ sound source i localization ¢ sound source separation
Deep Neural De }}i Deep Neural
Network Network
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Fully-supervised DNN models have generally Audio annotation is
pushed the SOTA for machine listening, but suffer time-consuming, expensive, and
from lack of abundant annotated audio data often difficult



An overview of machine listening
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How do we make more effective use of the data we have?



Transfer learning for machine listening

What kinds of structure do people use?

“It helps to know “similar tasks often “many events can be
how concepts are require similar skills” perceived by multiple
related” senses”

®)

’@‘

“learning can happen

anywhere”



Transfer learning for machine listening

What kinds of structure can machines use?

parallel transfer learning . .
(a.k.a. multi-task learning) sequential transfer learning
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sound source multi-task output multi-modal embodied agents
hierarchies structure self-supervision
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Transfer learning for machine listening

Flavors of transfer learning

parallel transfer learning
(a.k.a. multi-task learning)

/ labeled multi-task \ e Shared representation is regularized by
dataset encoding relevant information for each task

e Model can learn more efficiently from the
same input data

Model

[ Representation ]

A
Task 1 Task 2

L Head ) Head ]
Task 1 Task 2 sound source multi-task output

K Output Output / hierarchies structure




Transfer learning for machine listening

Flavors of transfer learning

sequential transfer learning

e Models for niche applications can take

advantage of existing large datasets /large dataset \
despite small target datasets small labeled

dataset
e Sufficiently general representation can knowledge %

be used to easily bootstrap downstream “a"Sfe; __________ X

. . Upstream Downstream
models for variety of domains [ Representation } -1 Representation :
Model \___Mold_el_____l

Upstream ) Downstream

| Task Head | Task Head
Upstream Downstream

multi-modal embodied agents Task Output Task Output
self-supervision




Parallel transfer learning using sound
source hierarchies

parallel transfer learning

(a.k.a. multi-task learning)

sound source
NEEEIES




Parallel transfer learning using sound source hierarchies

continuous monitoring

Coarse Level: Order

Incorporate hierarchical
structure from
biological taxonomies
via multi-task training
and hierarchical model
architectures

Medium Level: Family

Fine Level: Species
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V. Lostanlen, A. Cramer, J. Salamon, et al., “BirdVox: machine listening for bird migration monitoring,” bioRxiv preprint 2022
A. Cramer, V. Lostanlen, A. Farnsworth, J. Salamon, and J. P. Bello, “Chirping up the right tree: incorporating biological taxonomies into bioacoustic classifiers,” ICASSP 2020
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Parallel transfer learning using sound source hierarchies

Hierarchical Flight call classification

4 Conv2D:24 (5,5
log mel 7 .—.—.—.———LL.L—-
PCEN-gram ¥ MaxPool2D: 24 (4, 2) gl

RelLU

|

|

: CNN architecture based on
ConvaD: 24 (5,5) }62 : prior bird flight call

:

1

1

1

1

1
1
1
1
1
1
| faxfool2Di2i(hd) classification model
NN 1
C 1
1
1
1

(Salamon et al. 2017)
;:LUZD 24 (5.5 } 63

v |

classification
subnetwork

multi-task
coarse-level  medium-level fine-level classification

prediction prediction prediction

NYU @ e S /N !

A. Cramer, V. Lostanlen, A. Farnsworth, J. Salamon, and J. P. Bello, “Chirping up the right tree: incorporating biological taxonomies into bioacoustic classifiers,” ICASSP 2020 12



Parallel transfer learning using sound source hierarchies

Multi-task prediction (d) and hierarchical outputs (e)
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A. Cramer, V. Lostanlen, A. Farnsworth, J. Salamon, and J. P. Bello, “Chirping up the right tree: incorporating biological taxonomies into bioacoustic classifiers,” ICASSP 2020 13



Parallel transfer learning using sound source hierarchies

Hierarchical partitioning (F)

log mel
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to reflect taxonomy structure
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A. Cramer, V. Lostanlen, A. Farnsworth, J. Salamon, and J. P. Bello, “Chirping up the right tree: incorporating biological taxonomies into bioacoustic classifiers,” ICASSP 2020 14



Parallel transfer learning using sound source hierarchies

Single-task baseline (a) - (c)

log mel
PCEN-gram

Specialist strategy: use model trained at target level

CNN
Coarsening strategy: use target-level ancestor of predicted taxa
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A. Cramer, V. Lostanlen, A. Farnsworth, J. Salamon, and J. P. Bello, “Chirping up the right tree: incorporating biological taxonomies into bioacoustic classifiers,” ICASSP 2020 15



Parallel transfer learning using sound source hierarchies

Training and evaluation

e Train on heterogeneous dataset of flight calls from various sources (ANAFCC*)

e Input to model: 150 ms log-scale mel-frequency spectrogram with per-channel
energy normalization (PCEN) applied

e Data augmentation: pitch shifting, time-stretching, additive background noise

e Evaluate at each taxonomic level using annotated clips from Full season of sensor
network recordings (BirdVox-14SD%)

% ANAFCC: https://doi.org/10.5281/zenodo.3666782
# BirdVox-14SD: https://doi.org/10.5281/zenodo.3667094

A. Cramer, V. Lostanlen, A. Farnsworth, J. Salamon, and J. P. Bello, “Chirping up the right tree: incorporating biological taxonomies into bioacoustic classifiers,” ICASSP 2020 16
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Parallel transfer learning using sound source hierarchies

Experimental Results

# Fine | Fine |Medium | Medium
Trained | Micro | Macro| Micro | Macro |Coarse
Model Params | Acc. | Acc. Acc. Acc. Acc.
Single-Task Model
Multi-task models ['(5) Fine Level 641K |61.13 | 54.80 | 64.61 | 50.40 | 77.72
e et (D) Medium Level 610K | - — [ 7380 | 56.04 | 94.75
coarsened! | (¢) Coarse Level 640K - - - - 93.85
TaxoNet Model

Layer Hier. | Classifier | Classifier

Partioning | Outputs | Activation | Projection
safe, simple choice | (d) No No sigmoid | Trainable | 641K | 61.82 | 55.83 | 75.10 | 55.87 | 94.39
better for variety of species | (e) No Yes sigmoid | Trainable | 650K | 58.74 | 58.06 | 75.83 | 60.04 | 94.54
better for common species | (f) Yes Yes sigmoid | Trainable | 649K |66.33| 55.69 | 76.50 | 61.60 | 94.69
(g) Yes Yes softmax | Trainable || 649K | 60.39 | 52.30 | 75.94 56.96 | 94.67
better for coarser taxa | (h) Yes Yes tanh Mean 640K | 63.47 | 41.46 | 79.36 | 65.08 | 94.75

A. Cramer, V. Lostanlen, A. Farnsworth, J. Salamon, and J. P. Bello, “Chirping up the right tree: incorporating biological taxonomies into bioacoustic classifiers,” ICASSP 2020 17



Parallel transfer learning using sound source hierarchies

Model makes reasonable errors
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V. Lostanlen, A. Cramer, J. Salamon, et al., “BirdVox: machine listening for bird migration monitoring,” bioRxiv preprint 2022
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Parallel transfer learning using sound source hierarchies

Automated acoustic monitoring captures intensity and timing of bird migration!
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B. M. Van Doren, V. Lostanlen, A. Cramer, et al., “Automated acoustic monitoring captures timing and intensity of bird migration,” Journal of Applied Ecology 2022
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Parallel transfer learning using sound source hierarchies

Flavors of transfer learning

parallel transfer learning
(a.k.a. multi-task learning)

labeled multi-task
dataset

R tati ® © hierarchical structure
[ eprﬁlssgef lon ] ® O improves model robustness!
|
v ¥ sound source
Task 1 N [ Task 2 hierarchies
L Head ) Head ]
Task 1 Task 2

\ Output Output /
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Parallel transfer learning using
multi-task output structure

parallel transfer learning

(a.k.a. multi-task learnin

)]
)

JHC

multi-task output
structure




Parallel transfer learning using multi-task structure

Source specific sound level estimation is difficult in practice

W ‘ |
AUDIO | PRCE SPECIFI_ :

SENSOR

Jackhammer at 100 dB! (It's really loud*!)
Dog at 60dB! (They're a little loud*! ut verygood)
Siren is -80 dB! (It's ~silent!)

22



Parallel transfer learning using multi-task structure

Source specific sound level estimation with multi-task learning

dBFS |—— sound level (dB)

. At
active ¢m~

Sound . .
inactive

Classifier

&

inactive

M""*“ [ — Source
AL Separator

:ji: T inactive

> H‘ Sound . )
i Classifier inactive

inactive

X, -4

A. Cramer, M. Cartwright, F. Pishdadian, and J. P. Bello, “Weakly supervised source-specific sound level estimation in noisy soundscapes,” WASPAA 2021 23
F. Pishdadian, G. Wichern, and J. Le Roux, “Finding strength in weakness: Learning to separate sounds with weak supervision,” TASLP, 2020.



Parallel transfer learning using multi-task structure

Source specific sound level estimation with multi-task learning

dBFS |——— sound level (dB):jj

‘Csssle(Xa}'—)S) |73| Z‘CCP(X Y7S)+£C(X Y7S) ]
deP A
..... Sound :
|’ 1 Classifier I
I I  EEEE— I I :
W W}MWMW I STFT| i SeS;::acteor , : 1 : : I classifier critic loss
: | : | | !
|
I
I
I

_________ . *  energy consistency loss 1 :
p \ . ] . 1 ,] Sound -(C)
K =T Bl i ! ~ 7 ctassifier y
l 'S 1 . I I

_________ g ‘ . . -/. l___/

ground truth labels - . ..
classifier critic

1 — Z . ne |
@ 9 @ &

MARL
TANDON ScHOOL N ] l / ) Northwestern
e — 9 University

- T TN
(bkgr) |

<>

A. Cramer, M. Cartwright, F. Pishdadian, and J. P. Bello, “Weakly supervised source-specific sound level estimation in noisy soundscapes,” WASPAA 2021 24
F. Pishdadian, G. Wichern, and J. Le Roux, “Finding strength in weakness: Learning to separate sounds with weak supervision,” TASLP, 2020.



Parallel transfer learning using multi-task structure

Source specific sound level estimation with multi-task learning
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A. Cramer, M. Cartwright, F. Pishdadian, and J. P. Bello, “Weakly supervised source-specific sound level estimation in noisy soundscapes,” WASPAA 2021 25

F. Pishdadian, G. Wichern, and J. Le Roux, “Finding strength in weakness: Learning to separate sounds with weak supervision,” TASLP, 2020.



Parallel transfer learning using multi-task structure

Source specific sound level estimation with multi-task learning
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A. Cramer, M. Cartwright, F. Pishdadian, and J. P. Bello, “Weakly supervised source-specific sound level estimation in noisy soundscapes,” WASPAA 2021 26

F. Pishdadian, G. Wichern, and J. Le Roux, “Finding strength in weakness: Learning to separate sounds with weak supervision,” TASLP, 2020.



Parallel transfer learning using multi-task structure

Training and evaluation

e Train and evaluate with 4-second synthetic soundscapes (16kHz) containing urban
sound events (from UrbanSound8K) and different levels of urban background noise
(SONYC-Backgrounds x)

o Different background levels: -50/-20/0 dB LUFS (weak/moderate/strong), no background

e Evaluate with respect to both source separation performance (SI-SDR improvement)
and sound level estimation performance (absolute dBFS error), comparing with
weakly supervised source separation baseline

* SONYC-Backgrounds: https://doi.org/10.5281/zenodo.5129078

Salamon et al.,, “A dataset and taxonomy For urban sound research,” ACM Multimedia, 2014.


https://doi.org/10.5281/zenodo.5129078

Parallel transfer learning using multi-task structure

Experimental Results

Baseline Comparisons Sound-Level Augmentation Ablation Background Augmentation Ablation
Sound Level Estimation Performance Sound-Level Estimation Performance Sound Level Estimation Performance

i _— =
20 B Baseline (@ N 12 20 HEE Baseline
5 [ Background Aug. I I g 10 - [ Energy Margin
= I Sound Level Aug. w g [r— Energy Margin,
w 15 — Sound Level Aug., I [ - w 15 Residual Loss
$ Background Aug. a n
& | 6 =
S —m— T ———— g ]
0] ( o 4 Q 10
5 | 2 e
8 5 < 2 S
2 s | 2 s
<< 0 <
l l Mel Freg.
0 = 0

— — — — — — — — Global Loss J I I
None Weak Moderate Strong Spectrum Loss (] lL l None Weak Moderate Strong
. L4

Background Presence Time-Freq. Loss Background Presence
SSSLE performance (and source Using multiple time-frequency The background classification loss is
separation performance) are resolutions is beneficial crucial when using an asymmetric margin

improved in up to moderate
background conditions!

SSSLE models can be trained with only clip-level source labels
using multi-task learning!

A. Cramer, M. Cartwright, F. Pishdadian, and J. P. Bello, “Weakly supervised source-specific sound level estimation in noisy soundscapes,” WASPAA 2021 28



Parallel transfer learning using multi-task structure

Flavors of transfer learning

parallel transfer learning
(a.k.a. multi-task learning)

labeled multi-task
dataset

[ Representation ]

identifying and capitalizing on
multi-task output structure

M0|C|el improves cross-task transfer!
v ¥ multi-task output
Task1 | [ Task2 structure
L Head ) Head )
Task 1 Task 2

\ Output Output /
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Parallel transfer learning using multi-task structure

What if there still isn’t enough data?

We can transfer knowledge from other models that have already
learned useful representations!

30



Sequential transfer using multi-modal
self-supervision

sequential transfer learning

&

multi-modal
self-supervision




Sequential transfer learning using multi-modal structure

Self-supervised transfer learning

unlabeled dataset

=

~

)

S |
Pretext
Representation
Model
; v
Pseudo
Labeler Pretext
Task Head
\ I
\ 4
Pseudo Pretext
Label Task Output

|

Train models with unlabeled datasets
using “pretext” tasks with corresponding
pseudo-labels

Model implicitly learns representation
encoding useful perceptual and/or
semantic information
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Sequential transfer learning using multi-modal structure | audio-visual correspondence

Audio-visual correspondence (AVC)

e Auditory and visual stimuli often correspond to a
common underlying source — audio-visual
correspondence

e AVCdefines a simple self-supervision task that learns

embeddings from unlabeled videos that are useful for

both downstream audio and visual tasks! [ (Dane e |
update; | Subnetwork Subnetwork | !
parameters | ; (] :

. . . —»!
e Can we better understand how to train effective audio P C°"°a+‘e"ate l E

° . 1
embeddings using AVC? ! [ Correspondence ] :
\ Task Head /'

Corresponds?
(Yes/No)

Cross-Entropy
Loss

R. Arandjelovic and A. Zisserman, “Look, listen and learn,” ECCV 2017 33



Sequential transfer learning using multi-modal structure | audio-visual correspondence

How do design choices affect downstream audio
classification performance?

Upstream Training

4 I
is it beneficial to use an linear spectrogram (257 bins)
audlo-mformec[ input . ! mel spectrogram (128 bins)
representation? mel spectrogram (256 bins)

- J
. . . . . \
is it important that the training data A\ & & “music” subset - instruments (+ tools)

for the embedding match the - B ese "
or 9 (ﬂ@,m & “environmental” subset - urban sounds
downstream classiFication task?

G J

how much training data is == )
sufficient for training the — g Periodic model checkpoints
embedding? = )

MARL

TANDON SCHOOL
OF ENGINEERING

L0
NY B

A. Cramer, H. H. Wu, J. Salamon, J. P. Bello, “Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings,” ICASSP 2019

Downstream Evaluation

Use embedding models as
feature extractors

Small multi-layer perception
trained for audio
classification

34



Sequential transfer learning using multi-modal structure | audio-visual correspondence

Training and evaluation

e Train and validate upstream AVC model using subsets of AudioSet

o  Generate pairs of 1 second audio clips and random overlapping video frame for positive,
shuffle pairs for negatives

o Data augmentation - video: crop, brightness, contrast, saturation; audio: loudness)

e Train and evaluate downstream models using multi-class audio classification datasets

(UrbanSound8K, ESC-50, DCASE 2013 Scene Classification)
o Obtain clip-level predictions by averaging framewise predictions on 1 second overlapping
frames

A. Cramer, H. H. Wu, J. Salamon, J. P. Bello, “Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings,” ICASSP 2019 35



Sequential transfer learning using multi-modal structure | audio-visual correspondence

Experimental Results
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A. Cramer, H. H. Wu, J. Salamon, J. P. Bello, “Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings,” ICASSP 2019 36



Sequential transfer learning using multi-modal structure | audio-visual correspondence

OpenL3 remains competitive!

HEAR 2021 submission summary
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J. Turian, et al. "HEAR: Holistic evaluation of audio representations." NeurlPS 2021 Competitions and Demonstrations Track. PMLR, 2022 37



Sequential transfer learning using multi-modal structure | temporal cycle prediction

Urban sound exhibits natural urban rhythm

e
g

Soundscapes often sound different depending on the time of day,
day of the week, or month of the year

38



Sequential transfer learning using multi-modal structure | temporal cycle prediction

Temporal cycle prediction

;3 1 SM
e Leverage self-supervised learning with an O : (Rl s : '
L3-like architecture using temporal cycle B 2T
o o 1 [ Dense: 64 | Dense: 64 Dense: 64 | Dense: 64 | |
prediction as the pretext task e e e e e
e Model predicts the phase in daily, weekly, and Emw— | 9
yearly cycles using only sensor network audio o e I I\
Max pool: (2,2)
e s
e Condition on sensor ID to help prevent model {FSNE —

from overfitting to sensor characteristics

1 s Mel-Spectrogram Input

'«‘ Size: (256, 199, 1)

M. Cartwright, A. Cramer, J. Salamon, and J.P. Bello. “TriCycle: Audio representation learning from sensor network data using self-supervision,” WASPAA, 2019
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Sequential transfer learning using multi-modal structure | temporal cycle prediction

Training and evaluation

e Train with unlabeled clips from a year of urban soundscape recordings obtained
from the SONYC acoustic sensor network

o Sample evenly in time, focusing on potentially meaningful events by randomly selecting
recordings for each hour in the top 15th percentile of SPL difference:

\/27719:0 (dm,n - dm,n— 1 ) 2

e Evaluate with a labeled urban sound tagging dataset from temporally-disjoint
SONYC recordings (SONYC-UST v1)

M. Cartwright, A. Cramer, J. Salamon, and J.P. Bello. “TriCycle: Audio representation learning from sensor network data using self-supervision,” WASPAA, 2019
M. Cartwright, A. E. M. Mendez, G. Dove, A. Cramer, V. Lostanlen, H. Wu, J. Salamon, O. Nov, and J. P. Bello, “SONYC urban sound tagging (SONYC-UST): a multilabel dataset from an 40
urban acoustic sensor network,” Zenodo, (2019). https://zenodo.org/record/2590742
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Sequential transfer learning using multi-modal structure | temporal cycle prediction

Experimental Results

Able to produce embeddings comparable with L3-Net
on downstream urban sound tagging

TriCycle MAD MAD MAD UST UST UST UST Sensor
Name Init. Train Variation Day  Week Year | F1@0.5 P@(05 R@0.5 AUPRC | Acc.
3 L?-Net No - o — — 0.638 0.767  0.547 0.751 0.792
rand Rand. No — — — — 0.531 0.697  0.429 0.632 0.721
rand-tc Rand. Yes — 0480 0.508 0.562 | 0.622 0.734  0.540 0.712 0.781
13-tc-llr L3-Net Yes Low LR 0370 0.531 0.540 | 0.638 0.764  0.548 0.739 0.824
13-tc-hlr L3-Net Yes High LR 0.338 0.443  0.545 0.638 0.749  0.556 0.737 0.851
rand-tc-rs Rand. Yes Rand. Sampling | 0.416 0.508 0.542 | 0.610 0.739  0.520 0.702 0.801
| rand-tc-pcen | Rand. Yes PCEN 0351 0.423 0.444 | 0.650 0.767  0.564 0.744 0.831]
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M. Cartwright, A. Cramer, J. Salamon, and J.P. Bello. “TriCycle: Audio representation learning from sensor network data using self-supervision,” WASPAA, 2019
M. Cartwright, A. E. M. Mendez, G. Dove, A. Cramer, V. Lostanlen, H. Wu, J. Salamon, O. Nov, and J. P. Bello, “SONYC urban sound tagging (SONYC-UST): a multilabel dataset from an 41

urban acoustic sensor network,” Zenodo, (2019). https://zenodo.org/record/2590742
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Sequential transfer learning using multi-modal structure

Flavors of transfer learning

multi-modal
self-supervision

natural multi-modal
correspondence provide
structure without human
annotations!
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Looking forward

What's next?

e

&

sound source multi-task output multi-modal embodied agents
hierarchies structure self-supervision
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Parallel transfer learning using sound source hierarchies

Beyond predefined hierarchies

e Unlike Euclidean embeddings,
Hyperbolic embeddings can directly
encode hierarchical structure without
distortion

e Self-supervised contrastive predictive
coding with hyperbolic embeddings can
implicitly learn hierarchies and
uncertainty

D. Suris, R. Liu, and C. Vondrick, “Learning the Predictability of the Future,” CVPR 20271

Input
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Parallel transfer learning using multi-task structure

Beyond predefined tasks

Wit
l A A l

“When are there Task Decod “Where is the siren Task Decod “Isolate the
gunshots active?” ask Decoder coming from?” sk Decoder dog barking.”

V I }
Il B § o 4

(a) Multi-Head Attention (b) HyperPrompt-Share/Sep  (c) HyperPrompt-Global

Task Decoder

S

Local (at each layer)
HyperNetwork hy ,

Global HyperNetwork Hy,

Hyper Prompts Global Prompts Layer-Aware Task Embedding

Y. He, et al., “HyperPrompt: Prompt-based Task-Conditioning of Transformers,” ICML 2022 45



Sequential transfer learning using multi-modal structure

Beyond audio-visual correspondence

e Egocentric videos may better align to
human perception than videos filmed
with handheld devices

e Telemetry data like accelerometry, B
recording timestamps, and location can "m—..,
be used for further self-supervision Human ocomoton I

e Embodied agents that interact with the
environment may even more effectively
align to human perception

Social interaction

K. Grauman et al., “Ego4D: Around the World in 3,000 Hours of Egocentric Video,” 2021.
S.Zhang et al., “EgoBody: Human Body Shape and Motion of Interacting People from Head-Mounted Devices,” ECCV, 2022.
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Sequential transfer learning using embodied perception

E m bOd ied n aVi g a ti 0 n Photorealistic renders from point clouds

+ spatialized audio from realistic RIRs

‘PV

W‘i

{, Reverb
ﬂﬁransmxd!bn 3 » ‘
a ® ))) ‘ f@arpet S AN 5 Acoustic Tef Ear
' ¥ ’ Render W’W

Right Ear

Agent must navigate
to audible goal using
audio and visual
sensory inputs

In this space, we're creating smart agents that can respond to real-life situations like the
fire alarm going off during a piano lesson.

C. Chen et al,, "SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning,” ArXiV, 2022
C. Chen et al, ‘'SoundSpaces: Audio-Visual Navigation in 3D Environments,” 2020.
C. Gan et al, “ThreeDWorld: A Platform For Interactive Multi-Modal Physical Simulation,” Neur/PS, 2021
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Sequential transfer learning using embodied perception

Self-supervision through intrinsic val

.rz
?
ICM
O(st+1) \ ’_, odar [ Ot
Forward @(St) (D‘(St+1)
Model
5 gpoe
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at St St+1

Intrinsic Curiosity Module: predict action from state s or misaignedaudio

embeddings before and after action

Stage 1: Sound Clustering sound clusters

online
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soundy,. events from visual
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2. !
action,
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neural network
Ic A
frame stack 5] S 5 512D visual features
g 18| 8
3 2 E A
1T ha e Audio-visual
e B modalities alignment

No o aligned?

it .\m = 512D audio features
!

D. Pathak et al., “Curiosity-driven Exploration by Self-supervised Prediction,” /CML, 2017.
C. Gan et al,, "Noisy Agents: Self-supervised Exploration by Predicting Auditory Events,” 2020.
V. Dean, S. Tulsiani, and A. Gupta, “See, Hear, Explore: Curiosity via Audio-Visual Association,” Neur/PS, 2020.
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Putting it all together
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In summary:

Incorporating natural structure is a promising path towards alleviating
data-scarcity and improving robustness in machine listening models!

parallel transfer learning : :
(a.k.a. multi-task learning) sequential transfer learning

sound source multi-task output multi-modal embodied agents
hierarchies structure self-supervision
. . identifying and capitalizing natural multi-modal embodied navigation
hierarchical structure X . .
. on multi-task structure correspondence provide may provide structure
improves model . . S :
improves cross-task structure without better aligning with
robustness! . .
transfer! human annotations! everyday experiences
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